PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END REGULAR EXAMINATIONS, JAN - 2023 MECHANICS OF SOLIDS
(ME Branch)
Time: 3 hours
Max. Marks: 70
Answer all the questions from each UNIT (5X14=70M)

		Questions	Marks	CO	KL
UNIT-I					
1.	a)	A steel rod of 3 cm diameter and 5 cm long is connected to two grips and the rod is maintained at a temperature of $95^{\circ} \mathrm{C}$. Determine the stress and pull exerted when the temperature falls to $30^{\circ} \mathrm{C}$, if (i) the ends do not yield, and (ii) the ends yield by 0.12 cm . Take $\mathrm{E}=2 \times 10^{5} \mathrm{MN} / \mathrm{m}^{2}$ and $\alpha=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.	[7M]	1	3
	b)	An aluminium bar 60 mm diameter when subjected to an axial tensile load 100 kN elongates 0.20 mm in a gauge length 300 mm and the diameter is decreased by 0.012 mm . Calculate the Modulus of elasticity and the Poisson's ratio of the material	[7M]	1	3
OR					
2.	a)	Determine total elongation for the bar shown in the Fig. Take $\mathrm{E}=2.1 \times 10^{5}$ $\mathrm{N} / \mathrm{mm}^{2}$	[8M]	1	3
	b)	In a material the principal stresses are $50 \mathrm{~N} / \mathrm{mm}^{2}, 40 \mathrm{~N} / \mathrm{mm}^{2}$ and -30 $\mathrm{N} / \mathrm{mm}^{2}$,calculate: i. Volumetric strain energy ii. Shear strain energy and iii. Factor of safety on the total strain energy criterion if the material yield at $100 \mathrm{~N} / \mathrm{mm}^{2}$. Take $\mathrm{E}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson ratio $=0.28$	[6M]	1	3
UNIT-II					
3.	a)	Derive the relationship between Shear Force (SF), Bending Moment (BM) and Rate of loading (w).	[7M]	2	4
	b)	Determine the shear force and bending moment values at A, B, C \& D for the cantilever beam shown in Fig. also draw S. F. D and B. M. D.	[7M]	2	3
OR					
4.	a)	A beam 5 m long rest on two supports carries a U.D.L of $4 \mathrm{kN} / \mathrm{m}$ and concentrated load 4kN as shown in Fig. Draw SFD and BMD for the beam.	[7M]	2	3

	b)	Explain about the point of contra flexure.	[7M]	2	2
UNIT-III					
5.	a)	List all the assumptions made in deriving the bending equation	[7M]	3	2
	b)	The preliminary design of a large shaft connecting a motor to a generator coils for the use of a hollow shaft with inner and outer diameters of 100 mm and 150 mm respectively. Knowing that the allowable shearing stress is 84 MPa , determine the maximum torque that is transmitted by shaft as designed	[7M]	3	3
OR					
6.	a)	Derive the shear stress distribution along the cross-section of triangular	[7M]	3	4
	b)	Derive the shear stress distribution along the cross-section of I section	[7M]	3	4
UNIT-IV					
7.	a)	A beam of length 5 m and a uniform rectangular section is simply supported at its ends. It carries a uniformly distributed load of $9 \mathrm{kN} / \mathrm{m}$ run over the entire length. Calculate the width and depth of the beam if permissible bending stress is $7 \mathrm{~N} / \mathrm{mm}^{2}$ and central deflection is not exceed 1 cm . Take E for beam material $1 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$	[7M]	4	3
	b)	What is the advantage of conjugate beam method over other methods?	[7M]	4	2
OR					
8.	a)	A simply supported beam of length 5 m carries a point load of 5 kN at a distance of 2.5 m from the left end. If $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=10^{8} \mathrm{~mm}^{4}$, determine the slope at the support and deflection under the point load.	[14M]	4	3
UNIT-V					
9.	a)	A thin cylindrical shell 2.5 m long has 700 mm internal diameter and 8 mm thickness. If the shell is subjected to an internal pressure of 1 MPa , find, the changes in diameter, length and volume. Take modulus of elasticity of the wall material as 200 GPa and Poisson's ratio as 0.3 .	[7M]	5	3
	b)	Derive an expression for volumetric strain in cylindrical shell	[7M]	5	4
OR					
10.	a)	A cylindrical pipe of diameter 1.5 m and thickness 1.5 cm is subjected to an internal pressure of 1.2 MPa. Determine hoop and longitudinal stresses developed in the pipe?	[10M]	5	3
	b)	Derive an expression for radial pressure and hoop stress for a thick cylindrical shell	[4M]	5	4

